Substituted Fluoren-9-ols.

By C. L. ARCUS and M. M. COOMBS.

[Reprint Order No. 5557.]

The synthesis of 3-nitrofluorenone reported by Ray and Barrick (*J. Amer. Chem. Soc.*, 1948, **70**, 1493) has been revised. 2-Methyl-, 3-methyl-, 2-methoxy-, 3-methoxy,- 2-hydroxy-, 2-amino-, and 3-nitro-fluoren-9-ol have been prepared by reduction of the corresponding fluorenones with aluminium *iso*propoxide. A form of 9-phenylfluoren-9-ol having m. p. 85° (lit., 107°) has been obtained.

A NUMBER of fluoren-9-ols, substituted with groups of different electronic characteristics, have been prepared for use in the syntheses of phenanthridines to be described (Arcus and Coombs, J., 1954, in the press).

Fluorenones.—2-Methyl-, 3-methyl-, and 3-methoxy-fluorenones have been obtained by known procedures.

The reduction of 2-nitro- to 2-amino-fluorenone is conveniently effected by stannous chloride. This amine was converted into 2-hydroxy- and hence into 2-methoxy-fluorenone by known methods.

A synthesis of 3-nitrofluorenone has been described by Ray and Barrick (J. Amer. Chem. Soc., 1948, 70, 1493); it consists of six stages: (i) conversion of 2-aminodiphenyl into its toluene-p-sulphonyl derivative; (ii) nitration of this at position 5; (iii) hydrolysis of the toluene-p-sulphonyl group; (iv) conversion of the amine into 2-cyano-5-nitrodiphenyl by a Sandmeyer reaction; (v) hydrolysis to 5-nitrodiphenyl-2-carboxylic acid; (vi) ring closure with sulphuric acid, yielding 3-nitrofluorenone. Ray and Barrick's procedures are effective for stages (i), (iii), (iv, modified), and (vi); those for stages (ii) and (v) proved unsatisfactory. Nitration, with fuming nitric-acetic acid according to these authors, gave an explosive reaction from the product of which the 5-nitro-derivative could not be isolated. Further, contrary to Ray and Barrick's statement, nitration with dilute nitric acid by Bell's method (J., 1928, 2774) proceeds satisfactorily; 5-nitro-2-toluene-p-sulphonamidodiphenyl was obtained in 79% yield. Hydrolysis in stage (v) with 50% sulphuric acid according to Ray and Barrick gave much tar and poor yields of the carboxylic acid; hydrolysis with aqueous acetic-sulphuric acid (Jones and Braker, U.S.P. 1,922,205) is effective.

Fluoren-9-ols.—Reduction of the corresponding fluorenones with aluminium isopropoxide in hot isopropanol gave the following fluoren-9-ols in the stated yields : 2-methyl(80%), 3-methyl- (84%), 2-methoxy- (71%), 3-methoxy- (71%), 2-hydroxy- (50%), 2-amino- (69%), 3-nitro- (86%). The new fluorenols have been converted into the corresponding 9-acetoxyfluorenes; 9-chloro-2-methoxy-, 9-chloro-2-nitro-, and 9-chloro-3-nitrofluorene have been prepared.

9-Methyl- and 9-benzyl-fluoren-9-ol were obtained from the known reaction of fluorenone with, respectively, methylmagnesium iodide and benzylmagnesium chloride; the interaction of phenylmagnesium bromide with fluorenone added (a) in benzene-ether solution, (b) as the powdered solid according to the original preparation by Ullmann and von Wurstemberger (*Ber.*, 1904, **37**, 73), yielded in each instance 9-phenylfluoren-9-ol, m. p. **85°**. The above authors, also Williamson, Anderson, and Watts (*J. Amer. Chem. Soc.*, **1943**, **65**, **49**), record m. p. 107°. On reaction with hydrazoic and sulphuric acids, the fluorenol, m. p. **85°**, gave 9-phenylfluorene having m. p. 78°, a value identical with that recorded by Ullmann *et al.* and by Williamson *et al.* for this compound prepared from the higher-melting fluorenol. The two forms of the fluorenol appear, therefore, to be structurally identical; no geometrical isomers (due, *e.g.*, to folding) were apparent on inspection of a C.R.L.-Catalin model of 9-phenylfluoren-9-ol. The compound is concluded to be dimorphic.

EXPERIMENTAL

M. p.s are corrected.

Fluorenones.—By the use of Ritchie's procedures (J. Proc. Roy. Soc., N.S.W., 1946, 80, 33) there have been prepared, successively, 5-methyl-2: 3-diphenylindole (49.5 g.), m. p. $155-156^{\circ}$, 1-acetyl-5-methyl-2: 3-diphenylindole (46 g.), m. p. $175-177^{\circ}$, 2-amino-5-methyl-benzophenone (22 g.), m. p. $60-61^{\circ}$, and 2-methylfluorenone [9.2 g., from light petroleum (b. p. $40-60^{\circ}$)], yellow needles, m. p. $91-92^{\circ}$. For these compounds, respectively, Ritchie records m. p. 156° , 176° , 63° , 92° .

2-Amino-4'-methylbenzophenone (10.7 g., m. p. 92° ; Org. Synth., 1952, 32, 8) was converted into 3-methylfluorenone [4.5 g., from light petroleum (b. p. $40-60^{\circ}$)], yellow prisms, m. p. 68° , by the method of Ullmann and Mallet (Ber., 1898, 31, 1694), who record m. p. $66 \cdot 5^{\circ}$.

2-Nitrofluorene (30 g.; m. p. 157—158°; Org. Synth., 1933, 13, 74) yielded 2-nitrofluorenone (27 g., from xylene), yellow leaflets, m. p. 220—221°, on oxidation according to Diels (Ber., 1901, 34, 1760), who records m. p. 222—223°. 2-Nitrofluorenone (100 g.), stannous chloride $(SnCl_2, 2H_2O; 400 g.)$, concentrated hydrochloric acid (400 ml.), and ethanol (200 ml.) were boiled together under reflux for 6 hr., and then cooled. The insoluble tin complex was collected and decomposed with an excess of 2N-sodium hydroxide. Crystallisation of the base from hot xylene gave permanganate-coloured needles of 2-aminofluorenone (68 g.), m. p. 158°. Diels (loc. cit.), who used ammonium sulphide as the reducing agent, records m. p. 160°.

2-Aminofluorenone (66 g.) was converted into 2-hydroxyfluorenone (61 g.), red needles, m. p. 206-208°, by the procedure of Diels (*loc. cit.*), who records m. p. 206-207°.

2-Hydroxyfluorenone (55 g.) gave 2-methoxyfluorenone (53·5 g.), orange needles, m. p. 75—76°, on methylation according to Werner and Gross (*Annalen*, 1902, **322**, 168), who record m. p. 77—78°.

By the use of Ullmann and Bleier's procedures (*Ber.*, 1902, **35**, 4273), N-toluene-p-sulphonylanthranilic acid (45 g.) was successively converted into 4-methoxy-2'-toluene-p-sulphonamidobenzophenone, 2-amino-4'-methoxybenzophenone sulphate, and 3-methoxy-fluorenone [11·1 g., from light petroleum (b. p. 60—80°)], yellow prisms, m. p. 99—100°. The above authors record m. p. 99°.

A suspension of 2-toluene-p-sulphonamidodiphenyl (200 g.; m. p. 99—100°) in water (2 l.) and concentrated nitric acid (200 ml.) was stirred at 100° for 9 hr.; the yellow oil became converted into a flocculent orange solid which was collected and crystallised from glacial acetic acid (750 ml.); it yielded 5-nitro-2-toluene-p-sulphonamidodiphenyl (160 g., 79%), orange needles, m. p. 168—169°. The procedure is adapted from that applied to 1 g. of sulphonamide by Bell (*loc. cit.*), who records m. p. 169°. Nitration of the sulphonamide (78 g.) by Ray and Barrick's method (*loc. cit.*) was at first tried : when the temperature reached 70° a reaction of explosive violence occurred. Reaction was again violent in an experiment on one-third the scale. No pure compound was isolated. 5-Nitro-2-toluene-*p*-sulphonamidodiphenyl (570 g.) was hydrolysed to 2-amino-5-nitrodiphenyl (240 g.), m. p. 125°, which (220 g.) was converted into 2-cyano-5-nitrodiphenyl (120 g.), m. p. 133—135°, by Ray and Barrick's procedures, except that sodium cuprocyanide was prepared according to *Org. Synth.*, Coll. Vol. I, 2nd Edn., pp. 170, 514. This nitrile (118 g.), hydrolysed by Jones and Braker's method (*loc. cit.*), gave 5-nitrodiphenyl-2-carboxylic acid (89 g.), m. p. 180°. Ring closure of this compound by the procedure of Ray and Barrick yielded 3-nitrofluorenone (60.5 g., from glacial acetic acid), yellow needles, m. p. 235°. Recrystallisation from glacial acetic acid, from pyridine, and from ethanol did not raise the m. p.; the above authors record m. p. 235—236°, 239—240° (corr.), and Nunn, Schofield, and Theobald (*J.*, 1952, 2797) record m. p. 232—233° (uncorr.).

Fluoren-9-ols.—Aluminium isopropoxide reductions. The fluorenone was heated, under reflux for the stated time, with a solution of aluminium isopropoxide prepared from aluminium turnings and isopropanol (0.4 g. and 12 ml., respectively, to 1 g. of fluorenone). The mixture

Fluorenone	2-Me	3 -Me	2-MeO	3-MeO	2-HO	$2-NH_2$	$3-NO_2$
Weight (g.)	$5 \cdot 0$	$4.5 \\ 120$	40·0	$7 \cdot 7$	2·0	16·0	20·0
Time (min.)	180		120	180	45 *	5 *	30 *

* Longer reaction times gave lower yields.

was poured into ice-cold N-sulphuric acid (20 ml. to 3 ml. of *iso*propanol), and the solid product was collected, washed, dried, and recrystallised.

9-Acetoxyfluorenes were prepared by heating the fluorenols with acetic anhydride and dry pyridine (respectively 1 ml. and 5 ml. to 1 g. of fluorenol) for 3 hr. on a steam-bath.

9-Chlorofluorenes were prepared by warming the fluorenols with thionyl chloride (5 ml. to 1 g. of fluorenol) until evolution of hydrogen chloride was complete; excess of thionyl chloride was removed *in vacuo*, and the product was recrystallised.

Exceptions to these procedures are recorded below. There were obtained :

2-Methylfluoren-9-ol [4.0 g., from light petroleum (b. p. 60–80°)], needles, m. p. 143–144° (Found : C, 85.65; H, 6.25. $C_{14}H_{12}O$ requires C, 85.7; H, 6.15%). It (1.0 g.) yielded 9-acetoxy-2-methylfluorene (1.0 g., from ethanol), needles, m. p. 114–115° (Found : C, 80.95; H, 6.2. $C_{16}H_{14}O_2$ requires C, 80.65; H, 5.9%).

3-Methylfluoren-9-ol [$3\cdot 8$ g., from light petroleum (b. p. 60-80°)], needles, m. p. 144-145° (admixture with 2-methylfluoren-9-ol depressed the m. p. by 20°) (Found : C, 85\cdot8; H, 6·0%). It (1·0 g.) gave 9-acetoxy-3-methylfluorene (0·75 g., from ethanol), plates, m. p. 90° (Found : C, 80·6; H, 6·1%).

2-Methoxyfluoren-9-ol [28:5 g.; from benzene; the solution was boiled with charcoal (1 g.)], buff prisms, m. p. 160° (Found : C, 79.4; H, 5.95. $C_{14}H_{12}O_2$ requires C, 79.25; H, 5.7%). It (1.5 g.) gave 9-acetoxy-2-methoxyfluorene (1.6 g., from ethanol), orange tablets, m. p. 82—83° (Found : C, 75.75; H, 5.8. $C_{16}H_{14}O_3$ requires C, 75.6; H, 5.55%). The fluorenol (10.0 g.) yielded 9-chloro-2-methoxyfluorene [8.0 g., from light petroleum (b. p. 40—60°)], yellow platelets, m. p. 98.5—99.5° (Found : C, 72.6; H, 4.85; Cl, 15.25. $C_{14}H_{11}OCl$ requires C, 72.9; H, 4.8; Cl, 15.4%).

3-Methoxyfluoren-9-ol [5.5 g., from light petroleum (b. p. $100-110^{\circ}$)], leaflets, m. p. 120° (Found : C, 78.6, 78.6; H, 5.75, 5.8%). It (0.5 g.) gave 9-acetoxy-3-methoxyfluorene (0.4 g., from ethanol), m. p. $126-127^{\circ}$ (Found : C, 75.55; H, 5.7%).

2-Hydroxyfluoren-9-ol (1.0 g.; the product from the reduction was reprecipitated from its filtered solution in 2N-sodium hydroxide, and crystallised from glacial acetic acid), golden needles, m. p. 188—189° (Found : C, 78.5; H, 5.15. $C_{13}H_{10}O_2$ requires C, 78.75; H, 5.1%). It (0.15 g.) was heated for 4 hr. with a treble quantity of reagents and yielded 2 : 9-diacetoxy-fluorene (0.1 g., from 50 % ethanol), prisms, m. p. 106° (Found : C, 72.35; H, 4.95. $C_{17}H_{14}O_4$ requires C, 72.35; H, 5.0%).

The solution from the reduction of 2-aminofluorenone was poured into ice-cold 2.5N-sodium hydroxide (1 l.); the product was reprecipitated from its solution in N-hydrochloric acid. It yielded 2-aminofluoren-9-ol (11 g., from ethanol), leaflets, m. p. 197—198°; Diels (*Ber.*, 1901, **34**, 1767) obtained this compound, m. p. 196°, by reducing 2-nitrofluorenone with zinc dust.

2-Nitrofluorenone (22·4 g.) gave 2-nitrofluoren-9-ol (18·7 g.), m. p. 128—129°, on reduction with aluminium *iso*propoxide according to Friedler (Ph.D. Thesis, London, 1952), who records the same m. p. for this compound; it (13·2 g.) yielded 9-chloro-2-nitrofluorene (10·5 g., from benzene), yellow columns, m. p. 141° (Found: C, 63·6; H, 3·25; N, 5·4; Cl, 14·45. $C_{13}H_8O_2NCl$ requires C, 63·55; H. 3·3; N, 5·7; Cl. 14·45%).

3-Nitrofluorenone was added in suspension in benzene (200 ml.) to the reagent prepared from 100 ml. of *iso*propanol; there was obtained 3-*nitrofluoren*-9-ol (17·3 g., from benzene), needles, m. p. 156° (Found : C, 68·45; H, 4·1; N, 6·2. $C_{13}H_9O_3N$ requires C, 68·7; H, 4·0; N, 6·2%). It (1·0 g.), heated under reflux for 5 hr. with acetic anhydride (20 ml.) and glacial acetic acid (20 ml.), gave 9-acetoxy-3-nitrofluorene (0·9 g., from ethanol), yellow needles, m. p. 130° (Found : C, 66·95; H, 3·85; N, 5·45. $C_{15}H_{11}O_4N$ requires C, 66·9; H, 4·1; N, 5·2%). The fluorenol (1·2 g.) yielded 9-chloro-3-nitrofluorene (0·55 g., from benzene), needles, m. p. 150—151° (Found : C, 63·5; H, 3·3; Cl, 14·8%).

9-Methylfluoren-9-ol (7·2 g., from benzene-ether), needles, m. p. 175°, and 9-benzylfluoren-9-ol [2·7 g., from benzene-light petroleum, b. p. $40-60^{\circ}$], tablets, m. p. $140-141^{\circ}$, were prepared by the interaction of fluorenone (8·0 g. for each) with methylmagnesium iodide and benzylmagnesium chloride by the method described below. For these fluorenols Ullmann (*Ber.*, 1905, **38**, 4107) records m. p. $174\cdot5^{\circ}$ and m. p. 139° .

To a stirred solution of phenylmagnesium bromide (from magnesium, 1.5 g., bromobenzene, 6.6 ml., and ether, 40 ml.) was added, during $\frac{1}{2}$ hr., a solution of fluorenone (10.0 g.) in benzeneether (20 ml. each). The mixture was heated for an hour on a steam-bath and added to ice and ammonium chloride; the benzene-ether solution was dried (Na_2SO_4) and concentrated to 30 ml., and light petroleum (b. p. $40-60^{\circ}$; 100 ml.) was added. There separated rhombs (11.1 g.), m. p. 73-75°, which (2.00 g.) lost solvent and attained constant weight (1.74 g.) during 30 min. at 120°; the resulting colourless melt solidified on cooling, to crystalline 9-phenylfluoren-9-ol, m. p. 85° (Found : C, 88.0; H, 5.4. Calc. for $C_{19}H_{14}O$: C, 88.35; H, 5.45%). This compound, on recrystallisation from benzene, gave rhombs, m. p. $74-75^{\circ}$ alone or when mixed with the substance of m. p. 73-75°, above. On recrystallisation from carbon tetrachloride, the fluorenol, m. p. 85°, gave prisms m. p. 80-84°, which effloresced in air; after 24 hr. the white powder again melted at 85°, alone or in admixture with the analysed specimen. 9-Phenylfluoren-9-ol was also prepared by Ullmann and von Wurstemberger's method (loc. cit.); it separated from light petroleum (b. p. 60-80°), containing benzene, as rhombs, m. p. 75° alone or when mixed with the similar material from the above preparation. Solvent was removed by heating the substance at 120° for 1 hr.; the product then had m. p $85-86^{\circ}$ alone and when mixed with the analysed specimen. The above authors obtained 9-phenylfluoren-9-ol, m. p. 107°, which, when recrystallised from carbon tetrachloride, formed solvated crystals, m. p. 85-88°; they also obtained a solvated fluorenol from benzene (m. p. unstated).

Phosphorus pentachloride $(2 \cdot 2 \text{ g.})$ was added to a solution of 9-phenylfluoren-9-ol $(2 \cdot 6 \text{ g.};$ m. p. 85°) in benzene (25 ml.); after 10 min. the solution was boiled under reflux for 5 min., then cooled and shaken with ice. The product $(2 \cdot 8 \text{ g.})$ from the benzene layer yielded 9-chloro-9-phenylfluorene $[0 \cdot 5 \text{ g.}, \text{ from light petroleum (b. p. 40-60°)}]$, tablets, m. p. 78°. Ullmann and von Wurstemberger (*loc. cit.*), also Williamson, Anderson, and Watts (*loc. cit.*), obtained 9-chloro-9-phenylfluorene, m. p. 78-79°, from 9-phenylfluoren-9-ol having m. p. 107°.

Thanks are expressed to the Government Grants Committee of the Royal Society and to Imperial Chemical Industries Limited, for grants.

BATTERSEA POLYTECHNIC, LONDON, S.W.11.

[Received, July 15th, 1954.]